banner

Showing posts with label Child. Show all posts
Showing posts with label Child. Show all posts

Saturday, December 24, 2011

NYC Sees Drop in Child Obesity; Can Other Cities Do Same?

THURSDAY, Dec. 15 (HealthDay News) -- In what might serve as a hopeful sign for all children in the United States, a new study finds that obesity rates among New York City's school children have dropped slightly in the past five years, particularly among the youngest.

Although the relative decline in obesity rates is only 5.5 percent, it's still the largest drop seen yet in any major U.S. city, the researchers noted, and many of the programs that New York City health and education officials implemented to combat rising childhood obesity rates are being tried in other parts of the country.

"This is really good news, but there are still one in five children in grades K-8 who are obese, which is still a huge number of children," said study author Magdalena Berger, a city research scientist in the New York City Department of Health and Mental Hygiene. "We are on the right track, but we still have a very long way to go."

Obesity among children has been increasing since the 1970s, Berger said. "In the last decade, nationally, we have seen a leveling off of obesity, but this is the first well-documented decline in obesity among children that we have seen."

The drop in obesity is statistically significant, because of the large number of children in New York City's public schools, Berger said. "Whether or not it's actually meaningful is another question," she added.

"I think it's meaningful in the sense that it's not going up, and that's good news, it's not staying stable, and that's good news," Berger said. "I would characterize this as a slow sustained drop over five years; it's not a dramatic drop."

Although the reasons for the decline in obesity among these school children isn't clear, Berger speculated that policies implemented by the New York City departments of health and education, along with more public awareness of the problem, may have played a role.

Study co-author Cathy Nonas, director of Physical Activity and Nutrition Programs in New York City's Department of Health and Mental Hygiene, said several changes in city schools probably contributed to the drop in obesity rates.

"There are significant changes in school food," she said. "There is no whole milk in the schools anymore, it's only 1 percent and the chocolate milk is skim and low sugar," she said. "That saved 4.5 billion calories, just by making that change."

In addition, food served in schools has reduced fat and no trans fats and reduced salt, and the level of fiber has been increased, Nonas said. Drinks and snack foods sold in schools are also healthier, she said. Similar policies were also instituted in early child-care centers, she added.

Also, the city has trained K-5 teachers on how to increase physical activity in the classroom, Nonas said.

"It's a layering effect" that all contributed to reducing obesity rates, Nonas believes. These and similar policies are being implemented throughout the country, she noted.

The report was published in the Dec. 16 issue of the U.S. Centers for Diseases Control and Prevention's Morbidity and Mortality Weekly Report.

For the study, Berger's team used data on the more than 900,000 children in kindergarten to eighth grade in New York City public schools. The city's school system collects fitness data on these students every year, Berger said.

The researchers found the relative obesity for these children, aged 5 through 14, dropped 5.5 percent, from 21.9 percent in 2006-07 to 20.7 percent in 2010-11.

The biggest drop was among children aged 5 to 6, where the relative decline was 10 percent, from 20.2 percent in 2006-07 to 18.2 percent in 2010-11, they noted.

These declines in obesity were seen in all race and ethnic groups, the researchers added.

Obesity expert Dr. David L. Katz, director of the Prevention Research Center at Yale University School of Medicine, said that "this report, showing a decline in obesity among New York City school children over the past five years is, to be sure, a glass half full. But I wouldn't get carried away with the celebrations just yet."

The absolute decline in the overall obesity rate is roughly 1 percent in five years, he noted. "At that rate of progress, it would take a century to fully reverse the damage done over the past several decades. The rate of obesity is still over 20 percent, and the gains are uneven."

This is a window to a very small part of a nationwide obesity problem, Katz added. "The resources of New York City may be sufficient to produce some good news, but that is not generalizable. We have a long way to go, and will need to build diligently on these modest gains to get there," he said.

"Obesity is still a major health issue in children," Dr. Achiau Ludomirsky, chief of pediatric cardiology at NYU Langone Medical Center, New York City, added in a statement. "We can definitely see that the decline in obesity among [New York City] school children is the result of early intervention for better diet, opportunity for physical fitness and the education of students and parents. It is a three-tier effect."

What kids eat and learn away from school is also key. "We can't reduce obesity levels without working closely with the families of students to help them offer better diet options at home and limit a child's time in front of the television, computers and video games," Ludomirsky said.

"But we still have a long way to go," he stressed. "If we don't address the childhood obesity epidemic more proactively right now, it will become a major health issue for the next generation of Americans."

More information

For more on childhood obesity, visit the U.S. National Library of Medicine.

NYC Sees Drop in Child Obesity, Can Other Cities Do Same?

THURSDAY, Dec. 15 (HealthDay News) -- In what might serve as a hopeful sign for all children in the United States, a new study finds that obesity rates among New York City's school children have dropped slightly in the past five years, particularly among the youngest.

Although the relative decline in obesity rates is only 5.5 percent, it's still the largest drop seen yet in any major U.S. city, the researchers noted, and many of the programs that New York City health and education officials implemented to combat rising childhood obesity rates are being tried in other parts of the country.

"This is really good news, but there are still one in five children in grades K-8 who are obese, which is still a huge number of children," said study author Magdalena Berger, a city research scientist in the New York City Department of Health and Mental Hygiene. "We are on the right track, but we still have a very long way to go."

Obesity among children has been increasing since the 1970s, Berger said. "In the last decade, nationally, we have seen a leveling off of obesity, but this is the first well-documented decline in obesity among children that we have seen."

The drop in obesity is statistically significant, because of the large number of children in New York City's public schools, Berger said. "Whether or not it's actually meaningful is another question," she added.

"I think it's meaningful in the sense that it's not going up, and that's good news, it's not staying stable, and that's good news," Berger said. "I would characterize this as a slow sustained drop over five years; it's not a dramatic drop."

Although the reasons for the decline in obesity among these school children isn't clear, Berger speculated that policies implemented by the New York City departments of health and education, along with more public awareness of the problem, may have played a role.

Study co-author Cathy Nonas, director of Physical Activity and Nutrition Programs in New York City's Department of Health and Mental Hygiene, said several changes in city schools probably contributed to the drop in obesity rates.

"There are significant changes in school food," she said. "There is no whole milk in the schools anymore, it's only 1 percent and the chocolate milk is skim and low sugar," she said. "That saved 4.5 billion calories, just by making that change."

In addition, food served in schools has reduced fat and no trans fats and reduced salt, and the level of fiber has been increased, Nonas said. Drinks and snack foods sold in schools are also healthier, she said. Similar policies were also instituted in early child-care centers, she added.

Also, the city has trained K-5 teachers on how to increase physical activity in the classroom, Nonas said.

"It's a layering effect" that all contributed to reducing obesity rates, Nonas believes. These and similar policies are being implemented throughout the country, she noted.

The report was published in the Dec. 16 issue of the U.S. Centers for Diseases Control and Prevention's Morbidity and Mortality Weekly Report.

For the study, Berger's team used data on the more than 900,000 children in kindergarten to eighth grade in New York City public schools. The city's school system collects fitness data on these students every year, Berger said.

The researchers found the relative obesity for these children, aged 5 through 14, dropped 5.5 percent, from 21.9 percent in 2006-07 to 20.7 percent in 2010-11.

The biggest drop was among children aged 5 to 6, where the relative decline was 10 percent, from 20.2 percent in 2006-07 to 18.2 percent in 2010-11, they noted.

These declines in obesity were seen in all race and ethnic groups, the researchers added.

Obesity expert Dr. David L. Katz, director of the Prevention Research Center at Yale University School of Medicine, said that "this report, showing a decline in obesity among New York City school children over the past five years is, to be sure, a glass half full. But I wouldn't get carried away with the celebrations just yet."

The absolute decline in the overall obesity rate is roughly 1 percent in five years, he noted. "At that rate of progress, it would take a century to fully reverse the damage done over the past several decades. The rate of obesity is still over 20 percent, and the gains are uneven."

This is a window to a very small part of a nationwide obesity problem, Katz added. "The resources of New York City may be sufficient to produce some good news, but that is not generalizable. We have a long way to go, and will need to build diligently on these modest gains to get there," he said.

"Obesity is still a major health issue in children," Dr. Achiau Ludomirsky, chief of pediatric cardiology at NYU Langone Medical Center, New York City, added in a statement. "We can definitely see that the decline in obesity among [New York City] school children is the result of early intervention for better diet, opportunity for physical fitness and the education of students and parents. It is a three-tier effect."

What kids eat and learn away from school is also key. "We can't reduce obesity levels without working closely with the families of students to help them offer better diet options at home and limit a child's time in front of the television, computers and video games," Ludomirsky said.

"But we still have a long way to go," he stressed. "If we don't address the childhood obesity epidemic more proactively right now, it will become a major health issue for the next generation of Americans."

More information

For more on childhood obesity, visit the U.S. National Library of Medicine.

Wednesday, December 21, 2011

Cellular Processing Of Proteins Found In Congolese Child Birthing Tea

Main Category: Nursing / Midwifery
Also Included In: Women's Health / Gynecology
Article Date: 13 Dec 2011 - 1:00 PST

email icon email to a friend   printer icon printer friendly   write icon opinions  
not yet ratednot yet rated
Many plants produce compounds that serve as a defense against predators or pathogens. Some are also used by humans for a variety of beneficial purposes, such as in medicines. As recently as the early 1990s, a unique class of proteins previously unknown to science, the cyclotides, was discovered. First noted through African tribal use as a tea given to speed up delivery during childbirth, cyclotides have since been determined to serve as a powerful insecticidal and nematocidal defense in the plants that produce them, and they also have anti-HIV and antimicrobial properties, with obvious benefits for humans. However, scientists are still working on unlocking much of the basic science of these fascinating proteins, including how they work and where in the plant cell they are produced.

Among the scientists interested in cyclotides, as well as other immune proteins, is Marilyn Anderson of LaTrobe University, Australia.

"Cyclotides are small cyclic peptides of only 28-37 residues that most plant biologists may not have heard of, yet they form the largest family of cyclic proteins described to date in any organism," explains Anderson. "Cyclic cyclotides are widespread in members of the Rubiaceae, Violaceae, Cucurbitaceae and Fabaceae families, yet linear cyclotides are also produced by major monocots such as rice, corn and barley."

"The big question is what do they do?" she continues. "We have discovered that some are potent insecticidal and nematocidal molecules but it is likely that some have other functions as yet undescribed."

Indeed, cycolotides have a unique shape resulting from three disulfide bonds and a peptide backbone that twists in such as way as to produce a cystine knot. This cyclic configuration provides the protein with a very stable structure that is hard to break down - which is how it maintains its bioactivity despite, for example, the high temperatures used to brew the tea used to aid childbirth in the Congo.

"The tea, called kalata kalata, was prepared by boiling the leaves so the active constituent had to be stable to boiling, as well as passage through the human intestinal tract where sufficient amounts were absorbed into the bloodstream to stimulate the uterus," comments Anderson. "Some years after its use was noted, in 1995, the structure of kalata B1, the active constituent from the tea, was solved and its cyclic structure was discovered."

Since then, Anderson, in collaboration with other researchers, has discovered that cyclotides are gene encoded - and in fact are encoded by a single gene, which was at the time unique for a cyclic protein from a eukaryote - and continues to investigate how plants make these cyclic peptides. Her most recent discovery is published in the December issue of the American Journal of Botany. She and her colleagues successfully determined where in the plant cell the cyclotide kalata B1 is produced and how its precursor protein, Oak1, is directed to the appropriate processing location*.

Kalata B1 is found in the leaves of Oldenlandia affinis (Rubiaceae) and, as with all proteins, is made up of building blocks of amino acids put together in a genetically determined sequence. The precursor protein to kalata B1, called Oak1, is linear and is made up of a series of domains, the centerpiece of which contains a cyclotide domain sandwiched between the N- and C-terminal segments. Other cyclotide precursors may contain up to three cyclotide domains.

Anderson and co-authors used a novel approach to determine where in the plant cell the precursor protein was sent and which segment contained the signal sequence responsible for directing it there. They split the precursor protein Oak1 up into its component parts and tagged each segment with the green fluorescent protein (GFP). They then transferred the different constructs into Agrobacterium, injected the Agrobacterium into living leaves of Nicotiana benthamiana, and two days later injected a dye to visually highlight the plasma membrane and the intracellular membranes, such as the tonoplast, which surrounds the vacuole.

Their first finding was that the precursor protein Oak1 was sent to the vacuole to be processed. When viewed under a microscope, cells that were injected with the Oak1-GFP construct had vacuoles that were entirely filled with florescent green dye.

This was a very exciting finding because enzymes hypothesized to play a key role in the ring formation of cyclotides are naturally found in the vacuole. These two pieces of information led the authors to conclude that the vacuole must be the location where Oak1 is converted into kalata B1.

But how is the precursor protein directed to the vacuole?

When the authors looked at cells injected with the different constructs, they found that the only cells that had green florescent vacuoles were those containing constructs with segments of the Oak1 precursor protein that contained propeptides from the N-terminal region. Thus, while the C-terminal segment of the precursor protein is critical for the formation of the ring structure, the N-terminal segments get it to the appropriate cyclization processing location.

Knowing precisely how the precursor protein is directed to its target location (the vacuole) where the cyclotide domain is excised and the ligation of the N- and C- termini occurs is a critical step in understanding the biology of these proteins.

"After conducting the research described in this paper," Anderson concludes, "we now know that the cyclization reactions occur in the vacuole and this provides more insight into the pH conditions required for cyclization and supports our hypothesis that the vacuolar enzyme asparaginyl endoproteinase is the crucial enzyme involved."

Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our nursing / midwifery section for the latest news on this subject. Conlan, Brendon F., Amanda D. Gillon, Barbara L. Barbeta, and Marilyn A. Anderson. (2011). Subcellular targeting and biosynthesis of cyclotides in plant cells. American Journal of Botany 98(12): 2018-2026. DOI: 10.3732/ajb.1100154 The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/98/12/2018.full.pdf+html. American Journal of Botany Please use one of the following formats to cite this article in your essay, paper or report:

MLA

American Journal of Botany. "Cellular Processing Of Proteins Found In Congolese Child Birthing Tea." Medical News Today. MediLexicon, Intl., 13 Dec. 2011. Web.
21 Dec. 2011. APA

Please note: If no author information is provided, the source is cited instead.


Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



View the original article here